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Abstract

The phenomenon of electric transport perpendicular to the planes of atoms is
discussed in terms of an ab-initio approach based on the Kubo-Greenwood equation.
Since level of decription is fully relativistic "artifacts" due to spin resolution are
avoided. Besides a formal discussion of the applied methods and an illustration of
the numerical procedures, in particular the dependence of the magnetoresistance
on the quality of interfaces, and issues concerning "tunneling" in metal/non-metal
heterojunctions are discussed.

1 Introduction

Although current perpendicular to the planes of atoms (CPP) experiments seem to be
easy to visualize in terms of a Landauer-type view of electric transport, its theoretical
description poses quite a few questions. Is it sufficient to consider transmission and
reflection matrices placed only at planes well-situated within the leads? What is the
relationship between conductivity and resistivity? Which part of a heterojunction, spacer
or interfaces actually causes a sufficiently large magnetoresistance ratio? If it is the spacer,
how much matters its actual structure? If the magnetoresistance is mainly due to the
interfaces, how about experimentally unavoidable interdiffusion? Are there any criteria
in terms of the resistivity or resistance other than rules of thumb that would distinguish
between "tunneling" and "weak" metallic conductance? Clearly enough on top of all
these questions nags the doubt whether or not it is justified to consider "spin" as an
observable, i.e., whether or not the concept of "spin currents" (spin-resolved currents)

makes any sense.
In this contribution exclusively the Kubo-Greenwood equation [1, 2, 3, 4] is applied to

CPP. Furthermore, in all applications and illustration shown a fully relativistic realization
of this equation is used implying that right from the beginning "spin" will not be consid-
ered as an independent ("observable") quantity. As recently two review articles appeared
[5, 61 discussing various aspects of the "giant magnetoresistance" (GMR), including also
CPP concepts, no attempt is made to present in here also other ab-initio type approaches. -

For a very detailed discussion of all theoretical implications of the present approach such
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as collinearity and non-collinearity, magnetic configurations, inhomogeneous alloying, etc.,
the reader is referred to a forthcoming review article [11].

2 The relativistic Kubo-Greenwood equation for sys-
tems with two-dimensional translational symmetry

Within the (non-relativistic) Density Functional Theory (DFT) the Kohni-Sham-Dirac

Hamiltonian is given by
7"H = at. p + [:Vne2 + V•f! In, ml + EE-. Bvfs [ n, ml (1)

E 0 0 I (2)

[j 0 0 1 '

V(r) =_ Vfil [n, m] = V" + VH"trm' + 6E,[n, m] (3)
bn

B(r) - B' 1 [n, mn = B=t ± eh E.,c[n,rml
2mc .m (4)

where n is the particle density, m the magnetization density, Veil [n, mJ the effective
potential, Be11 In, m] the effective (exchange) magnetic field, V`t and B" the corre-
sponding external fields, and the D• are Dirac- and the E5 Pauli (spin) matrices, see also
refs. [7, 8].

If G(z) denotes the resolvent of this Hamiltonian,

G(z) = (z - )-l ,z= O+ i6 ,(5)

then within the Kubo-Greenwood equation [1, 2, 3, 4] the diagonal elements of the con-
ductivity tensor are defined as

h
h, -o.tr J ImG+(Fp)gIrG+(4k)) (6)

NO t

where Im G+ (Q:,

can be formulated in terms of the so-called side-limits of G(z),
{G+(E) ;6>0

lim 0(z); (8)
G-(Q ;6 <0

I1
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Usually multiple scattering theory [8, 9] is applied in order to evaluate G(z) in the
configuration space representation (Green's function) and to perform the trace in eqn. (6).
If the system under consideration can be characterized by two-dimensional translational
symmetry (layered system; one and the same translational invariance has to apply in all
atomic layers) then for a particular magnetic configuration C the diagonal elements of the
conductivity tensor can be written [10, 11] as a double sum over atomic layers,

nP91
p,q=3

where
E,,(C; n) = rn Il'(C; n; 6) , (10)

29, :(c ;,n;,6) E ( _ • (- 1) +j 1_" c W ; ,7 , ,(

and n denotes the total number of atomic layers taken into account.

3 Current-perpendicular to the planes of
atoms (CPP)

Let z and z' denote continuous coordinate variables perpendicular to the planes of atoms
in a two-dimensional translationally invariant system. In the steady state one can write
the resistivity in the current-perpendicular to the planes of atoms geometry (CPP) as
[12, 13]

= -1 J f (z, z')dzdz' (12)

where [(z. z') is the inverse of •z, z') as defined by

I (z, z") (z'", z')dz" = 5(z - z') ( 1 3)

and L is the overall length of the structure for which the conductivity is calculated, see
also ref. [14]. The sheet resistance r and resistance R are then defined by the illowing
relations

r = AR = LEý7p, = J Uz, z')dzdz' , (14)rf

where A is the unit area.
The conductivity tensor -(z, zr) can now be mapped [15] (f :) onto the zz-components

of the conductivity tensor for a layered system introduced earlier, 3-)(n) I[,(n), i,j =
1, n, with i and j denoting planes of atoms,

f:--z, z') -. -ij(n) ,(15)
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such that the algebraic structure established by eqn. (13) is conserved,

n

E ý-Jn)F•(n) =bij .(16)
k=1

Clearly enough the sheet resistance r in eqn. (14) then serves as measure (g :) for the
mapping f,

g: r -r(n) , r(n) =Z .j(n) (17)
i'j= 3

since according to the Cauchy convergence criterion the integral in eqn. (14) can be
mapped onto a sum, i.e., onto r(n), if and only if,

r- li•r(n) < A , n E N+ (18)

or,

Ir(n+m)--r(n)I <A; nimEN+ , (19)

where A is an infinitesimal small number.
Making use of complex Fermi energies, EF = E. ± i6, according to eqn. (8) the sheet

resistance for a given magnetic configuration C is defined by

r(C; n) = uin r(C; n; 6) , (20)

where

r(C; n; 6) = • lij(C; n;6) , (21)
i,j=1

and

- qL(C, n; n6)Ij(CC; ; 6) =6j (22)
k-I

It should be noted that eqn. (20) simply refers to the side limiting procedure in eqn. (8).

4 CPP transport in heterojunctions

Suppose now for matters of simplicity that a typical heterojunction consists of n atomic
layers of magnetic leads (L) and s atomic layers of a spacer X, i.e., suppose that a hetero-
junction is of the type L,,X8L•. The total number of atomic layers t amounts therefore to
t = 2n + s which in turn implies for a given number of spacer layers that the convergence
criterion in eqn. (19) reads as follows

Ir(C;2(n+m)+s)-r(C;2n+s)[<A , mnGEN . (23)
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For each given spacer thickness s, the sheet resistance corresponding to a particular mag-
netic configuration C is therefore given by

r (C;s) = im lim r (C; 2(n + n) + s;6) (24),v.-M d-.

where Al is a sufficiently large integer number. In practical terms eqn. (24) can be split
up into two independent limiting procedures.

r (C;s; 6) = lim r(C: 2(n + m) + s;6) (25)rn-A!

r (C; s) = I 'm r (C;,,;; 6) (26)

4.1 Magnetoresistance ratio

The magnetoresistance ratio MR (GMR. "giant magnetoresistance") corresponds in the
so-called "pessimistic view" to

r (C'; s) - r (C; s)
MR= (C';s) (27)

and in the "optimistic view" to

MR = r (C';s) -r(C; s) (28)
r (C; s)

where in the case of collinear magnetic configurations C and C' usually are termed "par-
allel" and "antiparallel" configuration. The advantage of the definition in eqn. (27) is
simply that thus the magnetoresistance ratio is bound by one. Unfortuantely experimen-
tal data very often refer rather to the second kind of definition (because the value of the
giant magnetoresistance ratio is larger?). It should be noted in this context. however.
that eqn. (27) corresponds to the only useful definition of the angular dependence of the
anisotropic magnetoresistance. In here exclusively the "pessimistic view" is used.

4.2 Physical significance of the imaginary part of the Fermi en-

ergy

Suppose that in the Kubo-Greenwood equation, see (6), the current operator can be
approximated by a constant.

t•- tr ImG 4 (.i)lmG+(-.)) n2(() (29)

which in turn implies that the sheet resistance can approximately be written as

7 L7= L,-2 (q.) (30)
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Furthermore, suppose the density of states is calculated for complex Fermi energies, 4F
-F + ib,

"(•() = Lr- I = Ln-(E-2 + i6) , (31)

then from the properties of the density of states,

d [n(117 + ib)] _ { > 0; "non-metallic"

d _ < 0; "metallic" (32)

follows immediately
d±(6)] = f > 0; "metallic" (33)

dJ < 0; "non-metallic"

The functional form of the actually calculated sheet resistance with respect to the imagi-
nary part of the Fermi energy, see eqns. (25) and (26), can therefore be used to qualita-
tively interprete the underlying type of conducdance

d [r (C; s;6 )] f f > 0; "metallic" (34)
dh < 0; "non-metallic"

The last equation means inter alia that in the case of a negative slope of the sheet
resistance with respect to 6 "tunneling" might occur. The parameter 6 obviously acts like
a (small) constant selfenergy: in the regime of metallic conducdance an increase of the
selfenergy implies an increased resistivity (sheet resistance); in the non-metallic regime
an increase of 6 reduces the resistance, the system becomes more metallic.

Since very often the actual composition of a heterostructure is not known, i.e., no
information about interdiffusion at the interfaces, macroscopic roughness, etc., are not
available, in such a case it seems sufficient to consider the following magnetoresistance
ratio,

MR(6) = r (C'; s; 6) -r (C; s;6 ) (35)
r(C';s; 6)

where J is sufficiently small, for a semi-quantative characterization.

5 CPP transport & IEC

Certain aspects of current-in-plane (CIP) and CPP electric transport have to be correlated
with the so-called interlayer exchange coupling energy (IEC). The EEC classifies the type
of coupling between the magnetic parts of a heterojunction, i.e., determines regimes of
parallel and antiparallel coupling, or, can serve as (contineous) energy variable in an
ab-initio description of the exchange bias in spin valve systems [16].

Up to now in most evaluations of the IEC the magnetic force theorem [17] was applied
by considering the grand-potentials of the two magnetic configurations under investigation

A Eb = Eb(C) - Eb(CO) , (36)
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evaluating, however, only one magnetic configuration (Co, one of them) selfconsistently.
If dc, denote the respective concentrations of the constituents A and B in layer p then in
terms of the (inhomogeneous) CPA for layered systems 1101 AEb is given by

N

AEs =Z crAEP c (37)
p=1 =A,B -AR

where the

AE (n(C. F) - n=(Co, r)) (- r•p)dV , (38)

refer to component- and layer-resolved contributions to the grand-potential at T=0. In
eqn. (38) the nP(C. Q are component and layer projected DOS's corresponding to magnetic

configuration C. -4 denotes the bottom of the valence band and -4, is the Fermi energy of
the (nonmagnetic) substrate, see also ref. [8]. The energy integral in eqn. (38) is usually
performed in the upper half of the complex plane using a contour starting at 74 and ending

at FF.
Note that because of the definition given in eqn. (36) this implies the following energetic

order of magnetic configurations

AEb = { > 0: -. C; preferred configuration

< 0: - Co;preferred configuration (39)

6 Numerical implementation

All examples and illustrations shown in here are based on applications of the fully rel-

ativistic versions of the Screened Korringa-Kohn-Rostoker (SKKR) method 18] and the
Kubo-Greenwod equation [11]. Disorder such as interdiffhsion at interfaces or alloying in
the spacer part is described in terms of the (inhomogeneous) Coherent Potential Approx-
imation (CPA) for layered systems [101.

7 Illustrations of the numerical procedures

In Fig. I the variation of the parallel (P) and antiparallkl (AP) sheet resistance in bcc-
Fe(100)/FeGeFe,/Fe(100) is shown for a particular value of 6 and s versus the number

of Fe lead layers. As can be seen for n > 8 the sheet resistances start to grow linearly with
n. For 6 -- 0 the slope in this linear regime tends to zero [151, i.e., fr a sufficient number

of lead layers the sheet resistances become constant: the requirements in eqns. (25) and
(26). The physical reason for the convergence properties with respect to the number of

lead layers has to be correlated [15] with the oscillations of the (layer-resolved) Madelung
potentials, which starting at the interface only slowly approach the Madelung potential

in pure bec-Fe(100).
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Figure 1: Variation of the sheet resistance r(C; n; J) for bcc Fe(100)/Fe.Ge8 Fe./Fe, 6 =

2 niu, s = 9, with respect to n. The upper panel refers to the parallel configuration, the
lower to the antiferromagnetic configuration. Dashed lines indicate the extrapolation of
the linear regime to n = 0. From ref. [15].
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Figure 2: Density of states of the center vacuum layer at the complex Fermi energy [e + ib
as a function of 6 in bcc-Fe(100)/Fe1 2Vac,Fel 2/Fe(100) for s = 3 (circles), s = 6 (squares;
multiplied by 100), and s = 9 (diamonds; multiplied by 2,50). From ref. (18].

In Fig. 2 the density of states of bcc-Fe/FeVac,Fe,/Fe(100) at the Fermi level is
displayed with respect to 6 for 3, 6 and 9 layers of vacuum separating bcc-Fe(100) leads.
This figure shows that only for s > 9 the density of states in the center layer vanishes
completely. However, one can see also that for s > 6 the slope of n([t + i6) with respect
to 6 is positive, while it is slightly negative for s = 3. Fig. 3 on the other hand proves that
although the density of states for s = 3 has not vanished, the slopes of the sheet resistances
with respect to 6 are of different sign. In the antiparallel aligment a "tunneling" situation
is characteristic, while in the parallel aligment - in accordance with the simple density
of states picture - metallic conductance is predicted. Clearly enough in such a case the
magnetresistance ratio is rather very big.
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Figure 3: Analytical continuation of the sheet resistances r(C; 2n + s; 6) in bcc-
Fe(100)/Fe1 2Vac.FeI 2 /Fe(100), n > 11, s = 3, to the real energy axis. Top: parallel
configuration, bottom: antiparallel configuration. Full circles refer to calculated values,
dotted lines to the corresponding linear fit. From ref. [18].
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8 Where does the GMR effect in heterojunctions
come from?

For illustrative purposes the layer-resolved sheet resistances can be defined,

t

ri,(C; t: 6) = • [4(C; t; 6) r,(C; t) = hli ri(C; t; 6) (40)
j=l

where t is again the total number of atomic layers considered. It is important to note
that only the sum over these layer-resolved sheet resistances,

r(C;t;6) = Zrt(C;t;5) , r(C;t) = li mr,(C;t;6) (41)
i= I

is well-defined. By partitioning the difference of the sheet resistances

Ar(t) = r(AV; t) - r(P; t) (42)

with respect to the magnetic configurations into contributions arising from different parts
of the heterostructure, namely the left and right electrodes (leads), Ljq, and L,,6hI, the
interface regions between electrodes and spacer, Ijq, and ,ght, and the remaining spacer
part S,

Ar(t; 6) = ArL,q, (t;6 ) + Art,,,h,(t, ) (43)
+Ar11,,, (t; 6) + ArIl,qA, (t: 6) + Ars(t; 6),

a very informative "picture" of where the magnetoresistance comes from can be given.
Fig. 4 shows such a partitioning for the heterojunction bcc(100)/Fe,
(ZnSe),Fe,/Fe(100). As can be seen in both kinds of termination the GMR effect is
mostly determined by the Fe/ZnSe interfaces, indicating that the actual structure of the
spacer is of little importance.

9 Interdiffusion at the interfaces

Very often interdiffusion at the interfaces occurs, usually causing the lEC and the magne-
toresistance to decrease. An interesting case is bec(100)/Fe/
Si/Fe(bcc) since the regime of antifermrmagnetic coupling is increased by interdiffusion,
see Fig. 5. In this figure interface interdiffusion is restricted to a two-layer interdiffusion,
meaning that the layers FeSilc and Fei_,Si. form the interface, while all other layers
remain "pure". For the magnetoresistance (see Fig. 6), however, interdiffusion in this
system is disastrous as Fig. 7 shows. Independent of the spacer thickness a two-layer
interdiffusion corresponding to an interdiffusion concentration of about 15 - 20% almost
kills the effect. This is the very reason of why up-to-now in this system only a very
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Figure 4: Normalized fractions of the difference in the sheet resistance between the an-
tiferromagnetic and the ferromagnetic configuration in Fe(100)/(ZnSe) 21/Fe(100). The
various regions of the heterostructure are given explicitly. From ref. 119].
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small magnetoresistance ratio of less than 21. was found experimentally. Since however,
the formation of ordered or disordered silicides at the interface is almost unavoidable, a
Fe/Si/Fe heterojunction is probably a very bad candidate for a "TMR-device" (TMUR:
"tunneling magnctoresistance").

10 Tunneling or not-tunneling?

In the top part of Fig. 8 an interesting case is displayed, namely the layer-resolved
Madelung potentials in the 'academic" heterojunction bcc-Fe(100)/
Fe12Vac 12Fe12/Fe(100) and modifications thereof in the interior part of the vacuum bar-
rier. The lower part of this figures shows the corresponding changes in the parallel sheet
resistance if the barrier is increased. As can be seen there is a very sharp increase of
the sheet resistance as the value of the barrier increases, It should be noted that the
open symbols in the top part of this figure correspond to the selfconsistent values, all
other barrier heights are shifted by a constant with respect to the selfconsistent value.
Fig. 9 presents the outcome of the opposite situation, namely reducing the value of the
barrier. As can be seen (Fig. 9, top) the layer-resolved sheet resistances in the parallel
configuration are reduced in the interior of the vaccum harrier as the barrier height is
decreased. In the lower part of this figure the corresponding magnetoresistance ratios are
depicted. As the barrier height is approaching the value of the Madelung potential in the
semi-infinite leads (vertical line) a kink seems to develop separating the regime of metallic
conducting from a regime of "tunneling". This figure suggests that any heterostructure
with an average barrier for a (non-metallic) spacer of about less than 2 eV will show a rea-
sonable magnetoresistance ratio. Whether this is due to "tunneling" or very bad metallic
conductance has to be argued in terms of the functional form of the sheet resistances
with respect to the imaginary part of complex Fermi energies, see Fig. 3. Arguments in
terms of (decaying) states. etc., unfortunately have little in common with the product
of two Green's function in the Kubo-Greenwood equation. PerhapA an experimentalist's
resum6 [21], namely "tunneling is rare", is the most witty answer to resolve the academic
question of tunneling or not-tunneling.

11 Conclusion

It was shown that the present approach of evaluating CPP transport not only leads to
a correct description of sheet resistances and magnetoresistance ratios for heterojunc-
tions with in general interdiffused interfaces, but can be used also to discuss the role of
interfaces. Furthermore, in terms of a physical interpretation of the imaginary part of
the Fermi energy an essentially new aspect of the occurrence of tunneling can be given.
In particular the lower part of Fig. 9 indicates that there is a kind of cusp that sepa-
rates metallic from a "non-metallic" conductance, which seems to characterize also quite
generally realistic heterojunctions between magnetic metals and semi- or non-conducting
material.
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Figure 5: Changes of the IEC in bcc-Fe(100)/Si,/Fe(100) with respect to the number of
spacer layers for different interdiffusion concentrations cd. From ref. [20].
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s, The full hie is a 4th order fit of the magnetoresistance to the data points. Inset:
Difference between the calculated points and the fit depending on the number of Si layers.
From ref. 5200.
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diamonds refer to the vacuum region with V- = 0, -0.2 ry and -VAI, respectively. Bottom:
In Ir(P; 2n + s; 6)] ý n > 11, 6 = 2 mry, of bcc-Fe(100)/Fe1 2 Vac1 2Fe1 2 /Fe(100) as a function
of Vc. Vm denotes the selfconistently determined barrier height in the center layer of the
vacuum region. From ref. [18].
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Figure 9: Top: Sheet resistance r('P; 2no + s; 6) (top) and magnetoresistance R(2 ri, +
s;6) (bottom), 6 = 2 try, in bcc-Fe(100)/Fel 2Vac1 2 Fe1 2/Fe(100) as a function of the
constant shift Vc. In the top part squares, triangles, circles and diamonds refer to Vc =
0, -0.2, -0.3 and -0.4 ryd, respectively, in the lower part the regimes of metallic and
tunneling behavior of electric transport are separated by the condition VM = -Vc (vertical
line). VM denotes the selfconsistently determined barrier height in the center layer of the
vacuum region. From ref. [18].
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